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Abstract
For a number q bigger than 1, we consider a q-difference version of a second-
order singular differential operator which depends on a real parameter. We
give three exact parameter intervals in which the operator is semibounded from
above, not semibounded, and semibounded from below, respectively. We also
provide two exact parameter sets in which the operator is symmetric and self-
adjoint, respectively. Our model exhibits a more complex behavior than in the
classical continuous case but reduces to it when q approaches 1.

PACS numbers: 02.30.Lt, 02.30.Sa, 02.30.Tb, 02.20.Uw
Mathematics Subject Classification: 47B39, 47B25, 47B37, 39A12, 39A13,
34N05

1. Introduction

Let H be a densely defined symmetric operator on a Hilbert space H with domain D(H). Let
U be a unitary operator and let a ∈ (0,∞)\{1}. The operator H is said to be (a, U)-invariant
[2, 3, 9] if

UD(H) = D(H)

and for any f ∈ D(H),

UHf = aHUf.

From the definition of an (a, U)-invariant operator, it follows that such an operator is
either semibounded by zero (i.e., (Hf, f ) � 0 or (Hf, f ) � 0 for all f ∈ D(H)) or not
semibounded at all. It is well known [7] that any semibounded Hermitian operator always
admits semibounded self-adjoint extensions H with the same bound. If such an extension is

1751-8113/10/145207+15$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/14/145207
mailto:bekkerm@umkc.edu
mailto:bohner@mst.edu
mailto:a.herega@gmail.com
mailto:voulovh@umkc.edu
http://stacks.iop.org/JPhysA/43/145207


J. Phys. A: Math. Theor. 43 (2010) 145207 M B Bekker et al

not unique, then the set of all such extensions contains two extreme elements, the Friedrichs
extension HF and the Kreǐn extension HK. In [2, 3, 9] it was proved that a semibounded
(a, U)-invariant operator always admits semibounded (a, U)-invariant self-adjoint extensions.
In particular, the extreme extensions, HF and HK, are always (a, U)-invariant. In [2, 3] it was
also proved that if the index of defect of the operator H is (1, 1), then HF and HK are the only
(a, U)-invariant self-adjoint extensions of H.

In [2] it was also shown that any positive operator H with the index of defect (1, 1) which
is (as, Us)-invariant, where {Us : s ∈ R} is a continuous group, is unitarily equivalent to the
operator acting on L2(0,∞) defined by means of the differential expression

(H0x)(t) := −d2x(t)

dt2
+

α

t2
x(t) (1.1)

for some α ∈ [−1/4, 3/4). The operator H0 is defined on smooth functions with compact
support within (0,∞). It is well known that for α � 3/4, the operator H0 is essentially
self-adjoint (see [10, chapter VI, section 21, on pages 284 and 285]) and positive (see [15,
example 6.A.6 on page 107]), i.e., its closure H is a positive self-adjoint operator. The
spectrum of H is simple and absolutely continuous. For −1/4 � α < 3/4, the operator H,
the closure of H0, is a positive symmetric operator (i.e., (Hx, x) � 0 for any function x from
the domain of H) with defect numbers (1, 1). For α = −1/4, the operator H has a unique
positive extension, and for −1/4 < α < 3/4, it has a positive extension that is not unique.
The spectrum of any positive self-adjoint extension of H is continuous. For α < −1/4, the
operator H is symmetric, but not semibounded, with defect numbers (1, 1). For such values of
α, the spectrum of any self-adjoint extension H of H has a continuous part, filling the positive
semi-axis, and a discrete part, located on the negative semi-axis.

In the present paper, we start to investigate a difference version of the differential operator
defined by (1.1), which is (q2, U)-invariant, where q > 1 and U is defined below in
theorem 2.4. We show that some properties of the constructed operator closely resemble
the properties of the differential operator. The results presented in this paper can be useful for
numerical calculations related to the differential operator defined by (1.1) and for the study
of one-dimensional fractal structures [8, 11, 14]. Moreover, these results are important from
the point of view of dynamic equations on time scales [4], unifying continuous and discrete
calculus, as well as the related area of quantum calculus [5, 6].

The setup of this paper is as follows. The next section features some introduction and
first results on the q-difference operator under consideration. In section 3, we present some
auxiliary convergence results that are needed in the proof of our main result in section 4. The
paper concludes with a summary of our findings in section 5.

2. The q-difference operator

Let S be the linear space of all sequences x = {xn}n∈Z with complex entries. A discrete version
of the operator H0, discussed in the present paper, is constructed in the following way. Select
a number q > 1 and consider points tn = qn, n ∈ Z, as points of discretization. The first and
the second derivatives of a function x, defined on (0,∞) such that x = {xn}n∈Z = {x(qn)}n∈Z,
are replaced by the expressions

(Dqx)n = xn+1 − xn

qn+1 − qn
= xn+1 − xn

qn(q − 1)

and (
D2

qx
)
n−1 = (Dqx)n − (Dqx)n−1

qn − qn−1
= xn+1 − (1 + q)xn + qxn−1

q2n−1(q − 1)2
,

2
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respectively. Let

α ∈ R and β = 1 + q + (q − 1)2α. (2.1)

We will study the discrete version of the differential operator (1.1), namely the mapping L
defined for any x ∈ S by the formula

(Lx)n = −(
D2

qx
)
n−1 +

α

qn−1qn
xn

= −xn+1 − (1 + q)xn + qxn−1

q2n−1(q − 1)2
+

α

q2n−1
xn

= −xn+1 − βxn + qxn−1

q2n−1(q − 1)2
. (2.2)

Let l2
0(Z; q) be the linear subset of S consisting of sequences with finite support. Evidently,

the transformation L maps l2
0(Z; q) into itself. Instead of the space L2(R+), we consider the

linear space l2(Z; q) of all sequences {xn}n∈Z with complex entries such that
∞∑

n=−∞
qn|xn|2 < ∞.

It is clear that l2
0(Z; q) ⊂ l2(Z; q). With the inner product defined by

〈x, y〉 =
∞∑

n=−∞
(qn − qn−1)xnyn = (q − 1)

∞∑
n=−∞

qn−1xnyn, (2.3)

the space l2(Z; q) becomes a Hilbert space and l2
0(Z; q) is dense in l2(Z; q). Let L0 be the

linear operator defined on l2
0(Z; q) by the mapping L. Define

α− := − 1

(
√

q − 1)2
and α+ := − 1

(
√

q + 1)2
. (2.4)

Note that the definition (2.1) of β implies

β − 2
√

q = (
√

q − 1)2 + (q − 1)2α = (q − 1)2(α − α+) (2.5)

and

β + 2
√

q = (
√

q + 1)2 + (q − 1)2α = (q − 1)2(α − α−), (2.6)

and thus it is obvious that β is an increasing linear function of α such that α ∈ (α−, α+) if and
only if β ∈ (−2

√
q, 2

√
q).

We now show that the operator L0 is symmetric, positive when α � α+, negative when
α � α− and not semibounded when α− < α < α+. The first three statements are the contents
of the following theorem 2.1, while the last statement is implied by the subsequent remark 2.2.

Theorem 2.1. For any x, y ∈ l2
0(Z; q), the following relations hold:

〈L0x, y〉 = 〈x, L0y〉, 〈L0x, x〉 � 0 for α � α+, 〈L0x, x〉 � 0 for α � α−.

Proof. Suppose that x, y ∈ l2
0(Z; q). Then (note that all sums in the following calculation

are in fact finite)

〈L0x, y〉 = −
∞∑

n=−∞

xn+1 − βxn + qxn−1

qn(q − 1)
yn

= −
[ ∞∑

n=−∞

xnyn−1

qn−1(q − 1)
−

∞∑
n=−∞

βxnyn

qn(q − 1)
+

∞∑
n=−∞

qxnyn+1

qn+1(q − 1)

]

= −
∞∑

n=−∞
xn

yn+1 − βyn + qyn−1

qn(q − 1)
= 〈x, L0y〉.

3
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This completes the proof of the first statement. In order to prove the second and the third
statements, observe that 〈L0x, x〉 can be written in the form

〈L0x, x〉 = −
∞∑

n=−∞

xn+1 − βxn + qxn−1

qn(q − 1)
xn

= −
[ ∞∑

n=−∞

xn+1xn

qn(q − 1)
−

∞∑
n=−∞

β|xn|2
qn(q − 1)

+
∞∑

n=−∞

qxnxn+1

qn+1(q − 1)

]

=
∞∑

n=−∞

β|xn|2
qn(q − 1)

− 2 Re
∞∑

n=−∞

xn+1xn

qn(q − 1)
. (2.7)

We rewrite this equation and use the Cauchy–Schwarz inequality to get∣∣∣∣∣〈L0x, x〉 − β

∞∑
n=−∞

|xn|2
qn(q − 1)

∣∣∣∣∣ = 2

∣∣∣∣∣Re
∞∑

n=−∞

xn+1

qn/2
√

q − 1

xn

qn/2
√

q − 1

∣∣∣∣∣
� 2

√√√√ ∞∑
n=−∞

|xn+1|2
qn(q − 1)

∞∑
n=−∞

|xn|2
qn(q − 1)

= 2
√

q

∞∑
n=−∞

|xn|2
qn(q − 1)

so that

(β − 2
√

q)

∞∑
n=−∞

|xn|2
qn(q − 1)

� 〈L0x, x〉 � (β + 2
√

q)

∞∑
n=−∞

|xn|2
qn(q − 1)

.

Therefore, by (2.6) the operator L0 is negative provided α � α−, and by (2.5) is positive
provided α � α+. This concludes the proof. �

Remark 2.2. The constants α+ and α− are exact, i.e., for all K > 0 and

• for all α < α+, there exists x+ ∈ l2
0(Z; q) with 〈L0x

+, x+〉 < −K;
• for all α > α−, there exists x− ∈ l2

0(Z; q) with 〈L0x
−, x−〉 > K .

Proof. Let K > 0. First suppose α < α+. Now pick any integer

N >
(q − 1)K + 2

√
q

(q − 1)2(α+ − α)
and define x+

n =
{
qn/2 if 1 � n � N

0 otherwise.

Then x+ ∈ l2
0(Z; q) and

〈L0x
+, x+〉 (2.7)= βN

q − 1
− 2

√
q(N − 1)

q − 1
(2.5)= (q − 1)2(α − α+)N

q − 1
+

2
√

q

q − 1
< −K.

Now suppose α > α−. Pick any integer

N >
(q − 1)K + 2

√
q

(q − 1)2(α − α−)
and define x−

n =
{
(−1)nqn/2 if 1 � n � N

0 otherwise.

Then x− ∈ l2
0(Z; q) and

〈L0x
−, x−〉 (2.7)= βN

q − 1
+

2
√

q(N − 1)

q − 1
(2.6)= (q − 1)2(α − α−)N

q − 1
− 2

√
q

q − 1
> K.

Hence both α+ and α− are exact. �

4
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By theorem 2.1, the operator L0 is symmetric, and therefore it admits closure. Let L
be the closure of L0, i.e., L = L0. L is a densely defined symmetric (possibly, self-adjoint)
operator. For α � α+, the operator L is positive, i.e., 〈Lx, x〉 � 0 for any x ∈ D(L), where
D(L) denotes the domain of L, and for α � α−, the operator L is negative. It is well known
(see, e.g., [1]) that L∗ = L∗

0. Next we give an explicit description of the operator L∗.

Theorem 2.3. Let L : S → S be the mapping defined by (2.2). Then, the operator L∗ is well
defined on the linear set

D = {
x ∈ l2(Z; q) : Lx ∈ l2(Z; q)

}
,

and we have L∗x = Lx for any x ∈ D.

Proof. Suppose that the vectors x, v ∈ l2(Z; q) satisfy the equation

〈L0y, x〉 = 〈y, v〉 for every y ∈ l2
0(Z; q). (2.8)

Then, for every k ∈ Z, we can choose y = y(k) ∈ l2
0(Z; q) defined by the formula y(k)

n = δkn

for any n ∈ Z, where δkn = 1 if n = k and δkn = 0 if n 
= k. Since the operator L0 is defined on
l2
0(Z; q) by the linear mappingL, in view of (2.2) and (2.3), the equation 〈L0y

(k), x〉 = 〈y(k), v〉
implies vk = (Lx)k for every k ∈ Z, that is, v = Lx. Hence, L∗

0 has domain D(L∗
0) ⊂ D.

Consider the operator F defined on D by the formula Fx = Lx. As in the proof of
theorem 2.1, for every y ∈ l2

0(Z; q) and x ∈ D, we obtain 〈L0y, x〉 = 〈y, Fx〉. Therefore,
D(L∗

0) = D and L∗
0 = F , which, in view of L∗ = L∗

0, implies L∗ = F . The proof is now
complete. �

Theorem 2.4. There exists a unitary U such that L is (q2, U)-invariant.

Proof. Denote by U the operator on l2(Z; q) defined by

(Ux)n = 1√
q

xn−1. (2.9)

Then

‖Ux‖2 = (q − 1)

∞∑
n=−∞

qn−1 1

q
|xn−1|2 = ‖x‖2 .

It is clear that Ul2(Z; q) = l2(Z; q). Therefore, the operator U is unitary. It is easily seen that

(U ∗x)n = √
qxn+1. (2.10)

Direct calculations show that for any x ∈ l0(Z; q),

UL0x = q2L0Ux,

i.e., the operator L0 is (q2, U)-invariant. The same is true for the operator L, the closure of L0

(see [2, 3, 9]). �

3. Some auxiliary convergence results

For the proof of our main results presented in section 4 below, we will need to know if the
equation

(Lx)n = zxn, n ∈ Z, (3.1)

5
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has nontrivial solutions x ∈ l2(Z; q) for certain complex numbers z. In order to discuss the
convergence of

−1∑
n=−∞

qn|xn|2 (3.2)

for solutions x of (3.1), we employ the following theorem of Perron. This theorem was proved
first by Oskar Perron in 1910 in [12, Fundamentalsatz on page 19] and eleven years later
again by the same author in [13, Satz 3 on page 14], this time using a much simpler proof.
We formulate Perron’s result only in the special situation in which it will be employed in the
following.

Theorem 3.1 (Perron’s theorem). Consider the second-order linear difference equation

wn+1 + (b + bn)wn + cwn−1 = 0 for n ∈ Z, (3.3)

where

b ∈ C, c ∈ C\{0}, bn ∈ C for n ∈ Z and lim
n→∞ bn = 0.

Let λ1, λ2 ∈ C be the solutions of

λ2 + bλ + c = 0. (3.4)

Then (3.3) has two linearly independent solutions w(1) and w(2) such that

lim sup
n→∞

n

√∣∣w(1)
n

∣∣ = |λ1| and lim sup
n→∞

n

√∣∣w(2)
n

∣∣ = |λ2|.

Observe that Perron’s theorem does not require any restrictions on the characteristic roots
λ1 and λ2, and this is essential for the proof of theorem 3.2 below. Define

α−− := −
√

q − 1 + 1√
q

(
√

q − 1)2
and α++ :=

√
q + 1 + 1√

q

(
√

q + 1)2
. (3.5)

Note that definition (2.1) of β implies

β − q2 + 1√
q

= 1 + q − q
√

q − 1√
q

+ (q − 1)2α = (q − 1)2(α − α++) (3.6)

and

β +
q2 + 1√

q
= 1 + q + q

√
q +

1√
q

+ (q − 1)2α = (q − 1)2(α − α−−). (3.7)

Theorem 3.2. Assume α ∈ (α−−, α++). Let z ∈ C be arbitrary. Then every solution x ∈ S

of (3.1) satisfies

−1∑
n=−∞

qn|xn|2 < ∞.

Proof. Note that x solves (3.1) if and only if

xn+1 − (β − zq2n−1(q − 1)2)xn + qxn−1 = 0 for all n ∈ Z,

i.e.,

x−n+1 − (β − zq−2n−1(q − 1)2)x−n + qx−n−1 = 0 for all n ∈ Z,

6
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i.e., writing wn = x−n,

wn−1 − (β − zq−2n−1(q − 1)2)wn + qwn+1 = 0 for all n ∈ Z,

i.e.,

wn+1 + (b + bn)wn + cwn−1 = 0 for all n ∈ Z, (3.8)

where

b = −β

q
, c = 1

q

= 0 and bn = zq−2n−2(q − 1)2 → 0 as n → ∞.

Thus, we may apply Perron’s theorem (theorem 3.1) to conclude that there exist two linearly
independent solutions w(1) and w(2) of (3.8) satisfying

lim sup
n→∞

n

√∣∣w(1)
n

∣∣ = |λ1| and lim sup
n→∞

n

√∣∣w(2)
n

∣∣ = |λ2|,
where λ1 and λ2 are solutions of (3.4), i.e.,

λ1 = β −
√

β2 − 4q

2q
and λ2 = β +

√
β2 − 4q

2q
. (3.9)

Since α−− < α < α++, formulas (3.6) and (3.7) yield that

|β| <
q2 + 1√

q
.

Thus,

β2 − 4q <

(
q2 + 1√

q

)2

− 4q =
(

q2 − 1√
q

)2

.

Hence, if β2 − 4q > 0, then we have

|λi | � |β| +
√

β2 − 4q

2q
<

q2+1√
q

+ q2−1√
q

2q
= √

q for i ∈ {1, 2},

and, if β2 − 4q < 0, then we have

|λi | =

√√√√(
β

2q

)2

+

(√
4q − β2

2q

)2

= 1√
q

<
√

q for i ∈ {1, 2}.

Thus, in any case |λi | <
√

q for i ∈ {1, 2}. Observing that

−1∑
n=−∞

qn|xn|2 =
∞∑

n=1

q−n|wn|2, (3.10)

we apply the root test to check the convergence of (3.10) by calculating

νi := lim sup
n→∞

n

√∣∣q−nw
(i)
n

∣∣2 = 1

q

(
lim sup

n→∞
n

√∣∣w(i)
n

∣∣)2

= |λi |2
q

<
q

q
= 1 for i ∈ {1, 2}.

Hence, there exist two linearly independent solutions of (3.1), each such that the corresponding
series (3.2) converges. Then an arbitrary solution of (3.1) may be written as a linear
combination of those two solutions, and hence, applying the inequality |u+v|2 � 2(|u|2 +|v|2),
the arbitrary solution is also such that (3.2) converges. �

Remark 3.3. Although the following generalization of theorem 3.2 is not needed in our
proof of the main result in section 4 below, we mention it here for completeness. Some further

7
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−
√
q−1+ 1√

q

(
√
q−1)2

− 1
(
√
q−1)2

∗
−1

4

− 1
(
√
q+1)2

∗
3
4

√
q+1+ 1√

q

(
√
q+1)2

α

length is
1√
q

length is
4
√
q

(q−1)2

length is
1√
q

− q2+1√
q

−2
√
q 2

√
q q2+1√

q
β

Series diverges
for some solutions

undecided

Series converges
for all solutions

undecided

Series diverges
for some solutions

Figure 1. Results of Perron’s theorem for series (3.2).

analysis of the two values |ν1| and |ν2| from the proof of theorem 3.2 yields the results depicted
in figure 1.

Now we discuss the remaining values of α.

Theorem 3.4. Assume α ∈ [α++,∞). Let z ∈ (−∞, 0) be arbitrary. Then any solution
x ∈ S of (3.1) such that

x−1 = 1 and x−2 � 2 + q√
q

(3.11)

satisfies

−1∑
n=−∞

qn|xn|2 = ∞.

Proof. Since α � α++, formula (3.6) yields that

β � q2 + 1√
q

.

Suppose x solves (3.1) and satisfies (3.11). With wn = x−n as in the proof of theorem 3.2,
(3.1) is equivalently rewritten as (3.8), where

b � −
q + 1

q√
q

, c = 1

q
and bn = zq−2n−2(q − 1)2 ↗ 0 as n → ∞.

Thus, w solves (3.8) and satisfies

w1 = 1 and w2 � 2 + q√
q

.

We first claim that

wn > 0 and
wn+1

wn

>
n + 1

n
√

q
(3.12)

8
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holds for all n ∈ N. This claim will now be proved by induction. First, w1 = 1 > 0 and

w2

w1
= w2 � 2 + q√

q
>

2√
q

,

so (3.12) holds for n = 1. Assume now that (3.12) holds for some n ∈ N. Then

wn+1 >
n + 1

n
√

q
wn > 0

and

wn+2

wn+1
= −(b + bn+1) − c

wn+1
wn

>
q + 1

q√
q

−
1
q

n+1
n
√

q

= 1√
q

{
q +

1

q
− n

n + 1

}
= 1√

q

{(√
q − 1√

q

)2

+ 2 − n

n + 1

}

>
1√
q

{
2 − n

n + 1

}
= n + 2

(n + 1)
√

q

so that (3.12) holds for n + 1. Hence, the claim is proved and (3.12) holds for all n ∈ N. We
may therefore note that the sequence of ratios defined by

rn := wn+1

wn

for all n ∈ N

is well defined and satisfies

rn+1 = −b − bn+1 − c

rn

for all n ∈ N. (3.13)

We now claim that there exists m ∈ N such that

wn+1 >
√

qwn for all n � m. (3.14)

This claim (3.14) yields that
{
q−nw2

n

}
n∈N

is positive and eventually strictly increasing and
hence does not tend to zero. Thus, (3.14) establishes the divergence of the series (3.10). In
order to show (3.14), we first assume

rn � rn+1 for all n ∈ N. (3.15)

From (3.15), we find

rn � r1 = w2

w1
= w2 � q + 2√

q
>

q√
q

= √
q for all n ∈ N

so that (3.14) follows with m = 1. Next, if (3.15) does not hold, then

rm > rm+1 for some m ∈ N. (3.16)

But applying (3.13) twice now yields

rm+1 = −b − bm+1 − c

rm

> −b − bm+2 − c

rm+1
= rm+2,

and hence rn > rn+1 for all n � m. Thus, the sequence {rn}n∈N is eventually strictly
decreasing. Since the sequence {rn}n∈N is also bounded below by 1/

√
q according to (3.12),

we now conclude that this sequence has a limit, say λ, and that

rn > λ � 1√
q

for all n � m. (3.17)

9
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By (3.13), we have λ = −b − c/λ, and so λ solves (3.4). The solutions (3.9) of (3.4) satisfy

λ2 �
q2+1√

q
+

√(
q2+1√

q

)2 − 4q

2q
= √

q and λ1 = c

λ2
= 1

qλ2
� 1

q
√

q
<

1√
q

so that λ = λ1 is impossible due to (3.17). Hence, λ = λ2 � √
q. Employing (3.17) again,

(3.14) follows. �

Theorem 3.5. Assume α ∈ (−∞, α−−]. Let z ∈ (0,∞) be arbitrary. Then any solution
x ∈ S of (3.1) such that

x−1 = −1 and x−2 � 2 + q√
q

(3.18)

satisfies
−1∑

n=−∞
qn|xn|2 = ∞.

Proof. Since α � α−−, formula (3.7) yields that

β � −q2 + 1√
q

.

Suppose x solves (3.1) and satisfies (3.18). Define now yn = (−1)nxn. Then y solves (3.11)
and

yn+1 − ((−β) − (−z)q2n−1(q − 1)2)yn + qyn−1 = 0 for n ∈ Z.

By theorem 3.4,
−1∑

n=−∞
qn|xn|2 =

−1∑
n=−∞

qn|yn|2 = ∞.

The proof is complete. �

Remark 3.6. Although the following generalization of theorems 3.4 and 3.5 is not needed
in our proof of the main result in section 4 below, we mention it here for completeness. With
only slight modifications in the proofs of theorems 3.4 and 3.5, both results remain valid if we
replace (3.11) and (3.18) by the condition

x−1 
= 0 and

∣∣∣∣x−2

x−1

∣∣∣∣ � max

{
2√
q

,
√

q

}
.

4. Index of defect of the operator L

Recall that for an unbounded symmetric operator T on a Hilbert space H, its defect numbers
are defined as dimensions of the kernel of the operator T ∗ − zI , where z is a complex number
that belongs to the field of regularity of T. The elements of the kernel of T ∗ − zI are called
defect vectors of T. Defect numbers are constant in each component of the field of regularity.
For a symmetric operator, the field of regularity has at most two connected components, and
the open sets C− = {z ∈ C : Imz < 0} and C+ = {z ∈ C : Imz > 0} are subsets of it. The
defect numbers n± are defined as dim Ker(T ∗ − zI) for z ∈ C±, and the ordered pair (n−, n+)

is called the index of defect of the symmetric operator. The operator is self-adjoint if and only
if n+ = n− = 0.

Since the operator L0 is defined by a difference expression with real coefficients, the defect
numbers of L are equal, i.e., n+ = n−. If α � α+ or α � α−, then it follows from theorem 2.1

10
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that the field of regularity of L is connected because it contains C \ [0,∞) or C \ (−∞, 0],
respectively.

For the further discussion, we need the following construction. Let l2(N0; q) be the linear
space of all sequences x = {xn}∞n=0 which satisfy the condition

∞∑
n=0

qn|xn|2 < ∞.

The space l2(N0; q) may be regarded as a closed subspace of l2(Z; q). Let A be the operator
on l2(N0; q) defined by

(Ax)n =

⎧⎪⎪⎨
⎪⎪⎩

− x1 − βx0

q−1(q − 1)2
if n = 0

−xn+1 − βxn + qxn−1

q2n−1(q − 1)2
if n ∈ N.

(4.1)

Lemma 4.1. The operator A defined by (4.1) is self-adjoint and compact.

Proof. Let e(k) ∈ l2(N0; q) for k ∈ N0 be defined by its components

e(k)
n = q−(k−1)/2

√
q − 1

δkn for n ∈ N0, where δkn =
{

1 if n = k

0 if n ∈ N0\{k}. (4.2)

It is clear that {e(k) : k ∈ N0} is an orthonormal basis of l2(N0; q). One can easily check that

‖Ae(k)‖2 = 1 + β2q + q4

q4k−1(q − 1)4
, k ∈ N, so that

∞∑
k=0

‖Ae(k)‖2 < ∞,

and hence A is a compact operator of Hilbert–Schmidt class. As in the proof of theorem 2.1,
one obtains that 〈Ax, y〉 = 〈x,Ay〉. Thus, the operator A, being bounded, is self-adjoint. �

We may use the operator A to prove the following auxiliary result:

Lemma 4.2. If A−zI is invertible and x is a defect vector of L corresponding to z such that
x−1 = 0, then x = 0.

Proof. Let x be any defect vector of L corresponding to z, i.e., x ∈ Ker(L∗ − zI). Note that
this implies x ∈ l2(Z; q). Define now the vector x+ ∈ l2(N0; q) by

x+
n := xn for all n ∈ N0. (4.3)

Since x−1 = 0, it follows from (4.1) and (3.1) that Ax+ = zx+. Hence, (A − zI)x+ = 0,
which implies x+ = 0 since A−zI is invertible. Since x solves (3.1), this implies x = 0. �

The following theorem is the main result of this paper.

Theorem 4.3. The index of defect of the operator L is

(1, 1) if α ∈ (α−−, α++)

and

(0, 0) if α ∈ (−∞, α−−] ∪ [α++,∞) .

Proof. Let us start with the case when α−− < α < α++. Consider the operator A defined on
l2(N0; q) by (4.1) and (note that A is bounded by lemma 4.1) choose

z := i(1 + ‖A‖),
11



J. Phys. A: Math. Theor. 43 (2010) 145207 M B Bekker et al

which is in the field of regularity of the operator L. Since |z| > ‖A‖, the operator A−zI has
an inverse operator (A − zI)−1. Let e(0) be the vector defined by (4.2). Then

x+ := (A − zI)−1e(0) ∈ l2(N0; q)\{0}. (4.4)

Let x ∈ S be the solution of the second-order difference equation (3.1) satisfying the conditions
x0 = x+

0 and x1 = x+
1 . From (4.1) and (3.1), it follows that xn = x+

n for every n ∈ N0, and
hence

∞∑
n=0

qn|xn|2 < ∞.

On the other hand, theorem 3.2 asserts that
−1∑

n=−∞
qn|xn|2 < ∞.

Thus, x is a nontrivial (i.e., x 
= 0) defect vector of L corresponding to z, which implies
dim Ker(L∗ − zI) � 1. Let x̃ be an arbitrary defect vector corresponding to the same z.
Define now y := x̃−1x − x−1x̃. Then y is a defect vector satisfying y−1 = 0. By lemma 4.2,
y = 0. Hence, x̃−1x = x−1x̃, and therefore (apply lemma 4.2 to the defect vector x 
= 0)

x̃ = κx, where κ := x̃−1

x−1
.

Thus, we conclude that dim Ker(L∗ − zI) = 1. Hence, the operator L has the index of defect
(1, 1).

Now we consider the case α � α++. In this case, theorem 2.1 implies that the field of
regularity of L contains (−∞, 0), and we can choose

z := −(γ + ‖A‖), where γ := 2q3√q

(q − 1)2
> 0. (4.5)

It is sufficient to show that the only solution of the difference equation (3.1) in l2(Z; q) is the
trivial solution x = 0. For the sake of contradiction, suppose that there exists a nontrivial
defect vector x̃ corresponding to z. Then x̃−1 
= 0 by lemma 4.2 (note that A−zI is invertible
because of |z| > ‖A‖), and now we consider the vector

x := 1

x̃−1
x̃,

which is also a defect vector corresponding to the same z and satisfies x−1 = 1. Taking into
account that x solves (3.1), which is a linear difference equation with real coefficients, we
may assume that all entries of x are real, i.e., xn ∈ R for every n ∈ Z. As in the proof of
lemma 4.2, we now define x+ ∈ l2(N0; q) by (4.3). Since x is a solution of (3.1), it follows
from (4.1) and (3.1) that

Ax+ = zx+ +

(
q

q − 1

)3/2

x−1e
(0), and thus x+ =

(
q

q − 1

)3/2

(A − zI)−1e(0).

Then, using (4.1) and (3.1) again, we obtain

|x0| =
∣∣∣∣∣
(

q

q − 1

)3/2

〈(A − zI)−1e(0), e(0)〉
∣∣∣∣∣

�
(

q

q − 1

)3/2

‖(A − zI)−1‖‖e(0)‖2

� q3/2

γ (q − 1)3/2
, (4.6)

12
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where we have used the inequality

‖(A − zI)−1‖ � |z|−1‖(Az−1 − I )−1‖ � 1

|z| − ‖A‖ .

From (3.1) and (4.6), it follows that

x−2 = β

q
− (q − 1)2

q4
z − x0

q
� q2 + 1

q
√

q
+

(q − 1)2

q4
γ −

√
q

(q − 1)3/2γ

(4.5)= √
q +

1

q
√

q
+

2√
q

−
√

q − 1

2q3
= 2 + q√

q
+

2q
√

q − √
q − 1

2q3

>
2 + q√

q
.

Thus, (3.11) holds, and theorem 3.4 asserts that x 
∈ l2(Z; q). Therefore, the operator L has
the index of defect (0, 0).

Finally, in the case when α � α−−, theorem 2.1 implies that the field of regularity of L
contains (0,∞), and we can choose z := γ +‖A‖ with γ as in (4.5). Following along the lines
of the previous part of this proof, we construct first a defect vector x satisfying x−1 = −1.
Inequality (4.6) therefore remains valid. From (3.1) and (4.6), it follows that

x−2 = −β

q
+

(q − 1)2

q4
z − x0

q
� q2 + 1

q
√

q
+

(q − 1)2

q4
γ −

√
q

(q − 1)3/2γ
>

2 + q√
q

.

Thus, (3.18) holds, and theorem 3.5 asserts that x 
∈ l2(Z; q). Therefore, the operator L again
has the index of defect (0, 0). �

Although the following statement has not been used in the proof of the main theorem,
we formulate it here for completeness. It complements lemma 4.2, and its proof is performed
using the (q2, U)-invariance of the operator L.

Lemma 4.4. If A−zI is invertible and x is a defect vector of L corresponding to z such that
xn = 0 for some n ∈ Z, then x = 0.

Proof. From the fact that the operator L is (q2, U)-invariant (see theorem 2.4), it follows that
the operator L∗ is also (q2, U)-invariant (see [2, 3, 9]), i.e.,

UL∗ = q2L∗U

with U as in (2.9). In particular, if x ∈ Ker(L∗ − zI)\{0}, then

Ux ∈ Ker

(
L∗ − z

q2
I

)
\ {0} and U ∗x ∈ Ker(L∗ − zq2I )\{0}.

The numbers z/q2 and q2z belong to the same component of the field of regularity of L as z.
It was shown in lemma 4.2 that

x−1 
= 0 for any nontrivial defect vector x.

Applying this to the defect vectors Ux and U ∗x and using

(Ux)−1 = x−2√
q

and (U ∗x)−1 = √
qx0

(by (2.9) and (2.10), respectively), we deduce that

x0 
= 0 and x−2 
= 0.

We may continue this process and obtain that xn 
= 0 for any n ∈ Z. �
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α−− α−
∗
−1

4

α+

∗
3
4

α++ α

negative semibounded positive semibounded

. . . . . . . . . . . .

Figure 2. Semiboundedness of the q-difference operator.

α−− α−
∗
−1

4

α+

∗
3
4

α++ α

self adjoint self adjoint

not self adjoint

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3. Self-adjointness of the q-difference operator.

5. Conclusions

Let q > 1 be fixed and define the Jackson derivative of a function x : {qn : n ∈ Z} → C by

(Dqx)(t) := x(qt) − x(t)

(q − 1)t
for t ∈ {qn : n ∈ Z}.

In this paper, we have shown that the q-difference operator defined by

−D2
qx(t) +

α

qt2
x(qt), where t ∈ {qn : n ∈ Z},

is not semibounded if and only if

− 1

(
√

q − 1)2
=: α− < α < α+ := − 1

(
√

q + 1)2

(see figure 2), and that it is not self-adjoint if and only if

−
√

q − 1 + 1√
q

(
√

q − 1)2
=: α−− < α < α++ :=

√
q + 1 + 1√

q

(
√

q + 1)2

(see figure 3).
Note that it is well known that both analogs for the corresponding classical differential

operator do not contain three intervals each, as above, but simply split the α line into two
halves at −1/4 for the semiboundedness result and at 3/4 for the self-adjointness result. One
can see nicely how this is resembled when letting q → 1 in our results. While

α+ → − 1
4 and α++ → 3

4 ,

we see that both

α− → −∞ and α−− → −∞
as q → 1. Hence, this third barrier in both of the above results is moving to the left when
decreasing the parameter q > 1, and it vanishes entirely in the limiting (the classical) case.

14
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Both the negative semiboundedness to the left of α− and the additional self-adjointness to the
left of α−− disappear in the classical case. Thus, it can be argued that the q-case exhibits a
more complex behavior than the classical case.
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